
Chapter 2

VISUALIZATION AND DEBUGGING TOOLS

1 OVERVIEW

The ANTs environment consists of numerous distributed software agents
and hardware components. System development in such an environment
requires a means of observing and validating the potentially hidden activities
of these components. Existing visualization and debugging tools provide
some mechanisms for observing behaviors and detecting faults in individual
components, but the fast-paced nature of ANTs agents makes these
conventional user interfaces (visualizations) and debugging techniques less
effective. This chapter will discuss several techniques for visualizing and
debugging complex, real-time, agent-based systems. These techniques vary
in their level of invasiveness and general applicability.

2 VISUALIZATION

User interfaces are a critical means of visualizing and verifying the
correct behavior of a system. This section discusses visualization strategies
for agent-based systems. The primary goal of these visualizations is to
support the developers and testers in observing and debugging agent-based
systems, although they have also proved useful for explaining domain and
solution concepts to third parties. Two visualization strategies are discussed
next: (1) infrastructure visualization and (2) agent visualization.

ANTs agents negotiate over the optimal use of radar nodes to track an

unknown number of targets within a given two-dimensional space (the

altitude dimension is removed from the ANTs challenge problem). The
sensors are key in this setting since their measurements are the raw data that
is used to interpret targets locations. Two limitations exist in the ANTs
challenge problem that constitute key complexities:

(1) only one of the three sensors on a radar node (each covering

approximately one third of the angular space around a node) can take
measurements at any given point in time. Radars thus have ‘blind
spots’ through which targets can move without being detected.

(2) only a limited bandwidth for agent communication exists. This
limitation prevents all sensor measurements from being shared among
all agents.

ANTs agents are deployed in a distributed setting where no single agent

has complete knowledge of the overall system state and activities. ANTs
agents thus have a limited knowledge of their surrounding world. Therefore
their goal is to draw conclusions based on the limited knowledge they have
available, including knowledge they are able to acquire through
communication with other agents. Agent-level visualization is thus about
how the agents perceive the world, and is usually agent-specific, since
different solutions likely differ in how they make and respond to those
perceptions.

The alternative to agent visualization is infrastructure visualization,

which captures global knowledge about the world by operating external to
the agents. This world knowledge may be comprised of a combination of
things the agents have access to (e.g., sensors) or not have access to (e.g.,
target location). Since there is only one world and since all agents are part
of the same world, only one infrastructure visualization is needed.

Infrastructure visualization is generally applicable and independent of

individual agent implementations, but this independence has other
limitations. Infrastructure visualization cannot observe agents directly.
Instead it instruments the underlying infrastructure used by the agents, and
then monitors that usage to track activities. Infrastructure visualization thus
captures raw resource usage, such as sensor measurements being taken, but
it does not attempt to provide rationale for why agents behave the way they
do. Instead, infrastructure visualization is useful in evaluating the quality of
agents as a measure of some solution-independent constraint. For example,
the goal of the ANTs agents is to optimally track all targets at all times. This
is a global constraint that can be evaluated using knowledge of current target
locations and sensor orientations.

In summary, agent visualization provides rationale for agent behavior but

it is hard to evaluate their effectiveness in satisfying the global goal. Agent
visualization is useful in determining whether agents behave optimally given
the limited knowledge of the world they have. Alternatively, infrastructure
visualization is a means of judging the quality of agents and it provides a
mechanism for comparing different solutions along a common set of metrics.
It is also a means of detecting flaws in agent behavior based on some global
properties they violate. A combination of infrastructure and agent
visualizations is desirable to detect inconsistencies between the actual state
of the world (the infrastructure) and the presumed state of the world (the
agent).

2.1 ANTs Infrastructure Visualization

The ANTs infrastructure consists of hardware components such as
sensors, targets, and communication channels, and it consists of software
components such as agents, data interpretation components (trackers) and
support libraries. Additionally, a simulation environment called Radsim
exists, which simulates the behavior of the hardware components for testing
purposes. The simulated software components have interfaces that are
(almost) identical to the real hardware components. Agents are thus
executable on both with only minor alterations.

Figure 1. Teknowledge Visualizer illustrates Infrastructure Usage and operates

in Real-Time and Playback Mode

The ANTs infrastructure originally did not fully support visualization;
only Radsim was capable of visualizing some simulated components (e.g.,
target movement, sensor modes and orientation). It was therefore necessary
to instrument the ANTs infrastructure, both hardware and simulated, to
capture all data necessary for visualization. This was achieved by
instrumenting the interfaces to and from the individual components. For
example, the agents gained access to the sensors and communication
medium through a library of Java classes. Instrumentation code was added to
those Java classes to intercept and forward required data to the visualization
tool itself. The visualization tool then interpreted this data and visualized it
in a meaningful fashion. The following describes briefly what hardware and
software components were instrumented and why.

Radars/Sensors

Sensors measure amplitude and frequency values that give clues about
the location, movement direction, and speed of targets. Only one type of
sensor was available but it was capable of operating in four different modes.
Each mode implied restrictions on the type of measurement taken (amplitude
and/or frequency) and the duration required to take them (1-3 seconds). The
purpose of the instrumentation was to capture information about the current
state of all sensors (their location, orientation, and other attributes), the times
and kinds of measurements, and the actual measurement values. Radars are
illustrated in Figure 1 as gray circles with colored cones where the cones
depict the orientation of the sensors (the active sensor head) and the colors
of the cones depict the mode being used to take measurements. Amplitude
measurements taken by sensors are depicted using ellipses, where the sensed
location of the target is along the circumference of the ellipse. Frequency
measurements are depicted as cones where the sensed location of the target
is within 15ft of the cone’s direction .

Targets (Ground Truth)

Recall that the purpose of the agents’ negotiation was to use available
resources to detect and track the various targets moving through the
environment. An important component of evaluating the progress of this
task is to know where the targets actually are, including their individual
locations, movement directions, and speed, which can be compared with the
agents’ results. Instrumentation was added to obtain real time target location,
direction, and speed. This was straightforward in the simulated
infrastructure; since the target was itself simulated it was straightforward to
get the required information. Instrumenting the hardware infrastructure was
much more elaborate because accurate data needed to be generated from the
model trains which served as targets. To do this, synchronization points were
added to the train tracks, and whenever the train would pass a sync point, the
time of this event was recorded. Given that the track layout, location of sync
points and train speed were known in advance, it was then possible to create
a prediction algorithm that interpolated train location, direction, and speed.
A more advanced version of the prediction algorithm also used a wireless
mouse to monitor train movement, where the ``distance traveled’’ by the
mouse was used to determine location on the track given a fixed starting
point. Targets are depicted in Figure 1 as red triangles were the sharp end of
the triangle indicates target direction.

Communication Channels

The infrastructure supported several types of communication medium to
determine the system’s performance under different conditions.
Instrumentation captured the utilization of the individual communication

channels and details about the messages sent across them, such as message
origin, destination, and length. Message traffic is depicted in Figure 1 in
form of arrows between radar nodes.

Trackers

The tracker was capable of projecting presumed target locations,
directions, and speeds based on sensor measurements. Instrumentation of the
trackers captured the data given as input (amplitude and frequency
measurements of sensors) and the data produced as output (target location,
direction, and speed). The projected targets are depicted in Figure 1 in the
form of green arrows. Input measurements given to trackers are depicted in
the form of colored measurement cones (blue ellipses for amplitude
measurements and red cones for frequencies).

Quality Criteria or Indicators

Although the ANTs infrastructure visualization does not visualize agent-
specific information, which is discussed later, it can be used to define quality
criteria and indicators that define good agent behavior. For example, any
given radar should be active and searching in the right direction when a
target is close. If it is inactive or not searching in the right direction then it
may have missed an opportunity to provide measurement data for the
tracker.

A special feature of the ANTs infrastructure visualizer is its ability to

visualize infrastructure usage in real-time, where changes to the
infrastructure are displayed as they are occurring. The instrumentation of the
infrastructure utilized a fast network to send data to the visualizer. In cases
where the network usage of the instrumentation could have adversely
affected agent negotiation (e.g., RF), an alternative network was used. The
visualizer was also capable of storing instrumentation data for later
playback.

2.2 ANTs Agent Visualization

Infrastructure visualization provides important functionality, not only
because it is generally applicable to all programs developed using the
infrastructure, but also because it allows different solutions to be evaluated
using a common framework. What it does not provide, however, are
solution-specific services. Different solutions to the same problem can and
will use vastly different approaches, and general infrastructure-level
visualization is unlikely to be able to capture and display all the nuances and
complexities which make these approaches interesting. Thus, while

infrastructure visualization is good at describing how well an approach is
working in general terms, agent-specific instrumentation and visualization is
needed to capture, evaluate and debug how a specific approach functions.

To varying degrees, all of the teams involved in the ANTs project utilized

instrumentation and visualization as part of their debugging cycle. This
section will discuss the efforts of the UMass team, which utilized these
techniques for several different aspects of their solution. The instrumentation
used by the UMass agents fell generally into two categories: general agent-
level information, and data that was collected on specific techniques.

The most basic type of instrumentation consists of logging simple state

information out to a file. As critical points in the program are reached,
important messages arrive, or failures occur, a simple text message can be
written to a log file. Many programs do not require anything more complex
than this, but when dealing with a distributed population of interacting
entities, each of which can be a complex autonomous program, the amount
of information generated by this technique can quickly become
overwhelming. In addition, the distributed nature of an agent-based solution
will mean that events in one agent will affect or be affected by the events in
other agents. To get a global view of the agent's activities, one must
reconcile these events in such a way that one can see these interactions.

The information quantity issue was resolved using a facility code

technique, similar to that used by the syslog logging daemon typically
found in Unix environments. Each log message is marked with one of
several log levels, indicating its importance, and a facility code indicating
the component in the agent that generated the message. Log level
assignments can then be used to restrict logging output to only those parts of
the system being actively investigated, thereby reducing the signal-to-noise
ratio in the log file and making it easier to identify pertinent events.
Distributed actions may be reconciled by marking each written log message
with a time stamp, which can be used to produce a global timeline where
agent interactions may be identified.

Even with smaller, more focused data files, it is still difficult to obtain a

more global view of activities in the system because these data sources are
segregated. To provide such a global view, a general log viewing utility was
developed that was capable of graphically interpreting the events in an
agent's log file and placing them in a timeline along with the events of other
agents. Figure 2 shows such a display after processing log files from six
agents.

Figure 2. A consolidated timeline of agent activities.

The log viewer reads the agents' log files and applies a configurable set
of filters to each of them. Each filter is responsible for visualizing a certain
class of log messages. For instance, in Figure 2 there were filters for
tracking messages and actions, among other things. Because each sequence
of events is aligned relative to the same timeline, the operator can quickly
inspect what was occurring at a given point in time and deduce what actions
might have led to that point. This utility can either perform a post-hoc
analysis or render the data in real time by monitoring agents' log files as they
are produced.

In addition to the general logging behavior described above, agents also
included more detailed instrumentation of particular aspects of the solution.
Tracking is a good example of this. In addition to the measurements and
target state recorded by the infrastructure, tracking agents would also save
solution-dependent aspects of this process. For example, received
measurements might not be used in the tracking process because they were
low quality, too old, or potentially ambiguous. Because they were
discarded, the infrastructure would not know of these measurements, and
therefore be unable to track such behavior. These were logged in a separate
location, along with other information pertinent to the tracking process.

Figure 3. A specialized view of agent tracking behavior.

The augmented tracking data is used by the track visualizer shown in
Figure 3. This view differed from the infrastructure visualization in its
ability to display solution-specific aspects of the tracking process, primarily
in its timeline of events. This timeline tracked which agents produced
measurements, and how they were or were not incorporated into a track.
This particular utility was the first such tool that allowed one to replay and
both quantitatively and qualitatively analyze the results of tracking activity.

For extremely fine-grained information, a visualizer was developed to
provide a real-time view of an agent's internal state. Much of the logic
implemented in the UMass agents use geometric shapes as the basic
quantitative unit, so this information mapped naturally into a graphical
display. This interface, shown in Figure 4, uses these same geometric
primitives being used for decision making to compose the image on the
screen. In Figure 4, the internal state of a tracking agent is presented, which
shows its knowledge of other sensors in the environment, where it believes
the target to be, which sensors it has allocated for tracking, and notions of
uncertainty, among other things. To the left of the image, a grid layout
shows the state of negotiation, by indicating the specific sensors and times
that have been requested as part of the tracking process. This very detailed,
yet concise view of an agent's state was invaluable when tracking down
undesired behaviors, as the exact mapping between the image and the agent's
working state made such problems readily apparent.

Figure 4. A view of an agent's internal state.

Simple statistical measures also provide an important, less graphical way

of analyzing performance. The general log files were used to extract a
number of useful, descriptive measurements. For example, when analyzing
the communication medium utilization, a comprehensive histogram of
message types and lengths was generated using the simple “message
received” log messages. Agent scheduling and execution activity was
similarly tracked. By using the time stamp on each log message, it was also
possible to approximate crude profiling behavior, by looking for points in
the timeline where certain activities would take longer than expected or
desired.

3 Debugging

3.1 Visualization as a debugging aid

It should be clear how visualization generally assists one in determining
how a particular system is functioning. The deeper question is whether or
not the benefits they provide outweigh the time required to develop such
tools. Based on experiences in the ANTs project, we would certainly answer
this affirmatively, particularly when the environment is complex or
distributed. The tools described here consistently found and helped diagnose
problems that would otherwise have remained hidden. As such, the various
agent and infrastructure visualizations helped detect negotiation flaws,
performance bottlenecks, target confusions during multi-target tests, and
many more.

3.2 Controlling the Environment

Implementing ANTs agents for an ideal world is already a non-trivial
task, but the real-world environment of ANTs is further complicated by (1)
unreliable, limited communication and (2) sensor measurement noise. Each
sensor platform had built-in support for wireless RF (Radio) communication
with the drawback of low bandwidth and a likelihood of message loss that
increased with bandwidth usage. Additionally, the measured values
produced by the sensors would deviate from their theoretical performance
due to a combination of known and unknown external effects. Of course,
these complexities are to be expected in any real-world environment.
Nonetheless, it is hard to design and validate systems where the effects of
noise are not well understood. In an effort to control noise for purposes of
debugging and testing, a pair of mechanisms were added which could
compensate for these effects.

The simulated infrastructure, Radsim, could mitigate both problems

because it simulated the noise factors itself. This allowed developers to
understand in what ways noise influenced agent behavior, and as such was
an important tool when preparing agents for the hardware environment.
However, like nearly every simulation, Radsim could not capture all of the
complexities of the hardware system with perfect accuracy. For instance, the
hardware infrastructure exhibited certain timing complexities (including
non-determinism) that were not easily captured by Radsim. Consequently, it
was also necessary to mitigate network and sensor noise in the hardware
infrastructure, for validation purposes.

The RF network noise and bandwidth limitations were mitigated through

the use of an alternative, high-bandwidth, reliable TCP network. Agents
could then be tested and validated separately through both communication
methods. The problem of sensor noise was somewhat harder to mitigate, but
we found that the instrumentation technique used for visualization could
serve dual purposes by providing “perfect” data that could be used to control
the sensor noise problem. The train instrumentation provided target location
information, which was then used to compute expected sensor measurements
based on their theoretical model. These “noise-free” sensor measurements
were then mixed with actual sensor measurements in real-time to provide
measurements with a controlled amount of noise. These techniques proved
useful in facilitating the transition of agent technologies from pure
simulation to a hardware-only environment.

