
UML/Analyzer: A Tool for the Instant Consistency Checking of UML Models

Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way, Suite 1010
Marina Del Rey, CA, USA
aegyed@teknowledge.com

Abstract

Large design models contain tens of thousands of
model elements. Designers easily get overwhelmed
maintaining the consistency of such design models
over time. Not only is it hard to detect new
inconsistencies while the model changes but it also
hard to keep track of known inconsistencies. The
UML/Analyzer tool identifies inconsistencies instantly
with design changes and it keeps track of all
inconsistencies over time. It does not require
consistency rules with special annotations. Instead, it
treats consistency rules as black-box entities and
observes their behavior during their evaluation to
identify what model elements they access. The
UML/Analyzer tool is integrated with the UML
modeling tool IBM Rational Rose™ for broad
applicability and usability. It is highly scalable and
was evaluated on dozens of design models.

1. Introduction

Instant error feedback of any kind is a fundamental
best practice in the software engineering process.
Although, there are several tools [6,7] that support the
incremental consistency checking of UML design
models [8], none of them have been proven to provide
design feedback instantly during modeling. This
problem exists in part because correctly deciding what
consistency rules to evaluate when a model changes is
a seemingly impossible task given the close to infinite
number of changes and change combinations. Any
manual overhead in deciding this is bound to be error
prone.

This paper presents the UML/Analyzer tool for the
instant consistency checking of UML models. The tool
helps designers in detecting and tracking
inconsistencies and it does so correctly and quickly
with every design change. The tool is fully automated
and does not require manual assistance. The tool can

be used to provide consistency feedback in an intrusive
or non-intrusive manner. This paper presents the tools
and its capabilities. The theoretical background was
published in ICSE 2006 [3].

1.1 Illustration and Problem

The illustration in Figure 1 depicts two diagrams
created with the UML modeling tool IBM Rational
Rose™. The given model represents an early design-
time snapshot of a real, albeit simplified, video-on-
demand (VOD) system [2]. The class diagram (top)
represents the structure of the VOD system: a Display
used for visualizing movies and receiving user input, a
Streamer for downloading and decoding movie
streams, and a Server for providing the movie data.

User

disp :
Display
disp :

Display

st : Streamerst : Streamer
1: select 2: connect

3: wait
4: play 5: stream

Sequence Diagram

Display
select()
draw()
stop()
start()

Server
connect()
handleRequest()

Streamer
stream()
wait()

Class Diagram

Figure 1. Simplified UML Model of the VOD System

The sequence diagram (bottom) describes the
process of selecting a movie and playing it. Since a
sequence diagram contains interactions among
instances of classes (objects), the illustration depicts a
particular user invoking the select method on an
object, called disp, of type Display. This object then
creates a new object, called st, of type Streamer,
invokes connect and then wait. When the user invokes
play, object disp invokes stream on object st.

Consistency rules for UML describe conditions that
any UML model must satisfy for it to be considered a

Proceedings of the 29th International Conference on Software Engineering (ICSE),
Minneapolis, USA, May 2007, pp: ???

valid UML model. Figure 2 describes two such
consistency rules on how UML sequence diagrams
(objects and messages) relate to class diagrams.

Rule
1

Name of message must match an operation in
receiver’s class
operations=message.receiver.base.operations
return (operations->name->contains(message.name))

Rule
2

Calling direction of message must match an
association
in=message.receiver.base.incomingAssociations;
out=message.sender.base.outgoingAssociations;
return (in.intersectedWith(out)<>{})

Figure 2. Sample Consistency Rules

For example, consistency rule 1 states that the name
of a message must match an operation in the receiver’s
class. If this rule is evaluated on the 3rd message in the
sequence diagram (the wait message) then the
condition first computes operations =
message.receiver.base.operations where
message.receiver is the object st, receiver.base is the
class Streamer, and base.operations is {stream(),
wait()}. The condition then returns true because the set
of operation names (operations->name) contains the
message name wait. The model also contains
inconsistencies. For example, there is no connect()
method in the Streamer class although the disp object
invokes connect on the st object (rule 1). Or, the disp
object calls the st object (arrow direction) even though
in the class diagram only a Streamer may call a
Display (rule 2).

1.2 Detect Inconsistencies

Our tool supports both the batch consistency

checking of an entire UML model and the incremental
consistency checking of design changes. To support
the fast, incremental checking of design changes, the
tool identifies all model elements that affect the truth
value of any given consistency rule. A consistency rule
needs to be re-evaluated if and only if one of these
model elements changes. We refer to this set of model
elements as the scope of a consistency rule. Identifying
the scope is simple in principle, however, it is not
possible to predict in advance what model elements are
accessed by any given consistency rule.

Our tool circumvents this problem by observing the
run-time behavior of consistency rules during their
evaluation. To this end, we developed the equivalent of
a profiler for consistency checking. The profiling data
is used to establish a correlation between model
elements and consistency rules (and inconsistencies).
Based on this correlation, we can decide when to re-
evaluate consistency rules and when to display
inconsistencies - allowing an engineer to quickly

identify all inconsistencies that pertain to any part of
the model of interest at any time (i.e., living with
inconsistencies [5]).

For example, the evaluation of rule 1 on message
wait first accesses the message wait then the message’s
receiver object st, then its base class Streamer, and
finally the methods stream and wait of the base class
(recall earlier). The scope of rule 1 on message wait is
thus {wait, st, Streamer, stream(), wait()} as illustrated
through the shading in Figure 1. Naturally, this scope
is different for every rule and model element it is
applies on. For example, the evaluation of rule 1 on
message play requires access to play, disp object,
Display class, and its four methods. Its scope is
different from the scope of rule 1 on message wait
even though both evaluations are based on the same
consistency rule. The UML/Analyzer tool thus records
and maintains the scope separately for every <rule,
model element> pair (e.g., <rule1, wait>). We refer to
a <rule, model element> pair as a rule instance.

If a model element changes then all those rule
instances are re-evaluated that include the changed
model element in their scopes. For example, if method
wait is renamed then the rule instances <rule1,
connect>, <rule1, wait>, and <rule1, stream> need to
be re-evaluated because they contain the method wait
in their scopes. Not evaluated are rule instances such
as <rule1, play> or <rule1, select>.

In earlier work [3], we demonstrated that this scope
is complete and correct based on the evaluation of
dozens of small to large-scale UML models.

1.3. Track Inconsistencies

While it is important to know about inconsistencies,
it is often too distracting to resolve them right away.
The notion of “living with inconsistencies” [1,5]
advocates that there is a benefit in allowing
inconsistencies in design models on a temporary basis.
While our tool provides inconsistencies instantly, it
does not require the engineers to fix them instantly.
Our tool tracks all presently-known inconsistencies
and lets the engineers explore inconsistencies
according to their interests in the model.

However, it must be noted that the scope of an
inconsistency is continuously affected by model
changes. Scopes of inconsistencies must thus be
maintained continuously. Fortunately, we found that
the scope of a rule instance only then changes if one of
the model elements in the scope changes. In other
words, the scope of a rule instance changes only if its
truth value is affected by a change. So, the mechanism
for discovering the scope of a rule instance (discussed
earlier in Section 1.2) applies to the tracking of

inconsistencies as well. The only difference: our tool
re-captures the scope of a rule instance every time the
rule is re-evaluated. This way the scope remains up-to-
date. The overhead cost of doing so is minimal.

If a designer later on desires to identify all
inconsistencies related to a particular model element
(or set of model elements) then our tool simply
searches through the scopes of all rule instances to
identify the ones that are relevant.

1.4. Fixing Inconsistencies

The UML/Analyzer tool also provides support for
fixing inconsistencies. It must be noted that in order to
fix an inconsistency at least one of the model elements
of the scope of that inconsistency must be changed.
Thus, the scope of an inconsistency serves as the
starting point for fixing inconsistencies. This is a very
relevant feature because many existing approaches are
unable to pinpoint all the model elements that
contributed to any given inconsistency. Our tool

provides all this information.

2. Tool and Architecture

Figure 3 depicts a few screen snapshots of the
UML/Analyzer tool. The left depicts IBM Rational
Rose. An inconsistency is highlighted. It shows that
the message connect (in the sequence diagram) does
not have a corresponding operation in the receiver’s
base class. This inconsistency (described in the top
right) involves 6 model elements, which are listed
there. As was discussed earlier, the tool also helps the
engineer in understanding exactly how model elements
affect inconsistencies. As such, when the engineer
selects a model element, say the message connect, then
the tool presents all rule instances that accessed it. The
bottom right shows that the message connect is
actually involved in two inconsistencies. This bi-
directional navigation is essential for understanding
and resolving inconsistencies.

Since consistency rules are conditions on a model,

Figure 3. UML/Analyzer Tool Depicting an Inconsistency in IBM Rational Rose™

their truth values change only if the model changes.
Instant consistency checking thus requires an
understanding when, where, and how the model
changes. For this purpose, our tool relies on the UML
Interface Wrapper component – an infrastructure we
previously developed and integrated with IBM
Rational Rose and other COTS modeling tools [4].
This infrastructure exposes the modeling data of the
COTS modeling tool in an UML-compliant fashion. It
also employs a sophisticated change detection
mechanism. The latter is particularly important
because it notifies our tool of changes to Rose’s UML
model.

UML Analyzer

Consistency
Checker

IBM
Rational

Rose

UML Interface

Rule Detector

UML
Model
UML
Model

Evaluation
Profiler

ScopeScope

Figure 4. UML/Analyzer Architecture

Figure 4 shows the architecture of our tool. It

depicts the modeling tool IBM Rational Rose on the
lower-right corner. Rose is wrapped by our UML
Interface Wrapper which provides an UML-compliant
API for the Consistency Checker (top-left). The UML
Interface Wrapper also notifies the Rule Detector
component of user changes to the model. The Rule
Detector then identifies which consistency rules are
affected by the changes. For this purpose, it reads the
Scope database. The Rule Detector then instructs the
Consistency Checker to re-evaluate the affected
consistency rules and it instructs the Evaluation
Profiler to observe what model elements the
Consistency Checker accesses. The Evaluation Profiler
then updates the Scope database accordingly.

3. Evaluation

The UML/Analyzer tool has been evaluated on over 40
case studies (industrial and open-source). The tool is
not a commercial-grade product; however, it is
integrated with the commercial UML modeling tool
IBM Rational Rose for ease of use and broader
applicability. The tool is part of an ongoing research

effort and is continuously evolved and improved upon.
As such, there are known bugs and limitations.

While the tool and its evaluation were based on the
UML 1.3 notation, we believe that the infrastructure
applies equally to other modeling languages (i.e., UML
2.0) because every consistency rule has to access
model elements and thus can be profiled. The
consistency rules may change but the infrastructure for
evaluating them instantly remains the same. To date,
our approach was implemented on top of a concrete
consistency rule language, consistency checker, and
modeling tool. If a different modeling tool is used then
the profiler needs to be customized to that tool and the
consistency rules have to be customized to the
language/checker available for that tool. Doing so does
not necessarily require access to the source code of the
modeling tool or the consistency checker.

4. References

1. Balzer, R.: "Tolerating Inconsistency,"

Proceedings of 13th International Conference on
Software Engineering (ICSE-13), May 1991,
pp.158-165.

2. Dohyung, K.: "Java MPEG Player,"
http://peace.snu.ac.kr/dhkim/java/MPEG/, 1999.

3. Egyed, A.: "Instant Consistency Checking for the
UML," Proceedings of the 28th International
Conference on Software Engineering (ICSE),
Shanghai, China, May 2005.

4. Egyed A. and Balzer B.: Integrating COTS
Software into Systems through Instrumentation and
Reasoning. International Journal of Automated
Software Engineering (JASE) 13(1), 2006, pp.41-
64.

5. Fickas, S., Feather, M., Kramer, J.: Proceedings of
ICSE-97 Workshop on Living with Inconsistency.
Boston, USA, 1997.

6. Nentwich C., Capra L., Emmerich W., and
Finkelstein A.: xlinkit: a consistency checking and
smart link generation service. ACM Transactions
on Internet Technology (TOIT) 2(2), 2002, pp.151-
185.

7. Robins, J. and others: "ArgoUML,"
http://argouml.tigris.org/.

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison
Wesley, 1999.

