
STRADA: A Tool for Scenario-based
Feature-to-Code Trace Detection and Analysis

Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way

Marina Del Rey
CA 90292, USA

aegyed@teknowledge.com

Gernot Binder
Systems Engineering and

Automation
Johannes Kepler University

A-4040 Linz, Austria
Gernot.Binder@students.jku.at

Paul Grünbacher
Christian Doppler Laboratory for
Automated Software Engineering

Johannes Kepler University
A-4040 Linz, Austria

Paul.Gruenbacher@jku.at

Abstract

Software engineers frequently struggle with
understanding the relationships between the source
code of a system and its requirements or high-level
features. These relationships are commonly referred to
as trace links. The creation and maintenance of trace
links is a largely manual, time-consuming, and error-
prone process. This paper presents STRADA
(Scenario-based TRAce Detection and Analysis) – a
tool that helps software engineers explore traces links
to source code through testing. While testing is
predominantly done to ensure the correctness of a
software system, STRADA demonstrates a vital
secondary benefit: by executing source code during
testing it can be linked to requirements and features,
thus establishing traceability automatically.

1. Introduction

Understanding the relationships between the
features of a software-intensive system (i.e.,
requirements) and its implementation (i.e., source
code) is very difficult. Software traceability aims at
defining such relationships. Trace links support
engineers in understanding complex software systems
and answer questions about completeness, conflict,
coverage, or consistency. A significant body of work
has been published about the usefulness of software
traceability [5][6][1] and the need for traceability has
expedited its way into numerous software engineering
standards and initiatives, such as ISO 15504, MDA, or
the CMMI. However, trace identification and evolution
requires significant effort [6] and is thus highly
challenging for both researchers and practitioners.

Tool support is essential for dealing with the scale
and complexity of traceability in real-world systems.
Here we present STRADA, a tool for Scenario-based

TRAce Detection and Analysis. STRADA provides
two major capabilities:

(1) Scenario-based Trace Capture: Given a set of
features and knowledge on how to test those features,
the tool silently observes what code is being accessed
during testing. The tool then concludes that the code
accessed during the testing of a feature must
implement that feature – a trace dependency. However,
the features of a software system are typically
interwoven in the implementation (i.e., crosscutting
concerns). This is evident in two, rather common,
situations: (i) Test scenarios typically relate to more
than one feature. As a result, there is an uncertainty
about which section of the accessed code belongs to
what feature. (ii) Test scenarios often access code that
does not belong to one of its features. This is typically
the case with code that is co-located (i.e., executed
together) but otherwise independent. As a result, there
is uncertainty as to who owns any given method.

(2) Trace Analysis: STRADA helps engineers to
identify and resolve uncertainties. It does so
automatically in cases where the captured trace links
constrain one another in a way that logical
consequences exclude certain feature/method
ownerships [1]. It also provides a simple but powerful
set of features to manually assist this process when the
automated approach dead ends.

We evaluated STRADA on a half dozen industrial
and open-source software systems – including the
ArgoUML, GanttProject, Siemens Route Planner, and
Video-on-Demand Player. Although not a commercial-
grade product, STRADA is quite scalable and fairly
reliable. Its capabilities are the result of thorough
research on scenario-based trace analyses over the last
couple of years [1][2][3][4].

Proceedings of the 29th International Conference on Software Engineering (ICSE),
Minneapolis, USA, May 2007, pp: ???

4. Tool and Experiences

Figure 1 depicts a screen snapshot of the tool which
illustrates the use of STRADA while observing the
execution of the GanttProject (lower left) through the
help of the Eclipse Profiler (upper left). Both
components of the STRADA tool have their own
visualizations. The Trace Capture component (middle)
is currently observing the execution of a test scenario
for the Add Resource feature. The Trace Analysis
component (bottom right) is visualizing the current
knowledge on feature-to-code mapping in form of a
trace matrix.

STRADA can be applied to any software system
that can be observed during execution. It does not
necessarily require source code, though source code
allows point-inspections to clarify uncertainties. The
use in distributed environments is limited to the ability
of the profiler. When working with STRADA one has

to be aware of the limitations
of profiling: profilers are
limited in that they just
monitor the execution. They
neither understand the code
they observe nor the
system’s features. During
testing, they do not know
whether a steam of method
invocations are logically
connected or belong to
separate requirements/fea-
ture that just happen to be
executed at the same time.

The tool is currently
restricted to Java-based
systems because the Trace
Capture component uses a
Java profiler. However, the
approach is not restricted to
this language and would
work if integrated with
profilers for other languages.

References

[1] Egyed A.: A Scenario-
Driven Approach to Trace
Dependency Analysis. IEEE
Transactions on Software
Engineering (TSE) 29(2),
2003, 116-132.
[2] Egyed A., Grünbacher
P.: Identifying Requirements
Conflicts and Cooperation,

IEEE Software 21(6), 2004.
[3] Egyed A., Grünbacher P., "Supporting Software
Understanding with Automated Traceability", Int'l Journal
of Software Engineering and Knowledge Engineering,
Vol. 15, No. 5, World Scientific Publishing Comp., pp
783-810, 2005
[4] Egyed, A., Heindl, M., Biffl, S., and Grünbacher, P.:
"Determining the Cost-Quality Trade-off for Automated
Software Traceability," Proc. 20th IEEE/ACM Int. Conf.
on Automated Software Engineering, Long Beach, CA,
2005.
[5] Gotel, O. C. Z. and Finkelstein, A. C. W.: "An
Analysis of the Requirements Traceability Problem,"
Proc. of the 1st Int. Conf. on Rqts Eng., 1994, pp.94-101.
[6] Ramesh, B., Stubbs, L. C. and Edwards, M. Lessons
learned from implementing requirements traceability.
Crosstalk, 8(4):11–15, 1995.
[7] Ramesh B., Jarke M.: Toward Reference Models
of Requirements Traceability. IEEE TSE 27(1): 58-93
(2001)

Figure 1. STRADA with Eclipse Profiler and Ganttproject

