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ABSTRACT
The complexity of product line variability models makes it
hard to maintain their consistency over time regardless of
the modeling approach used. Engineers thus need support
for detecting and resolving inconsistencies. We describe a
tool-supported approach for incremental consistency check-
ing on variability models. Our approach significantly im-
proves the overall performance and scalability compared to
batch-oriented techniques and allows providing immediate
feedback to modelers. It is flexible and extensible as new
consistency constraints can easily be added. Furthermore,
the approach is not limited to variability models and also
checks the consistency of the models with the underlying
code base of the product line. We present tool support and
report the results of a thorough evaluation based on real-
world product line models.

General Terms
Variability models, model consistency, incremental consis-
tency checking.

1. INTRODUCTION
Product line variability models are inherently complex.

Regardless of whether feature-oriented [1], decision-oriented
[2], or orthogonal [3] variability models are used, their size
represents a major challenge in real-world product lines as
they can easily contain thousands of elements with diverse
and often complex dependencies. In the collaboration with
our industry partner Siemens VAI – the world’s leading com-
pany in engineering and plant-building for the iron, steel,
and aluminum industries – we learned that engineers in prac-
tice face big challenges when maintaining the consistency of
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variability models. The models are subject to continuous
evolution [4] and need to co-evolve with the actual system
they represent to maintain consistency. The consistency of
the models is also essential for deriving correct products. In
product line engineering consistency constraints range from
simple rules (e.g., there must be no cycles in model element
dependencies) and well-formedness criteria to more sophisti-
cated checks (e.g., each component in the variability model
must exist in the product line code base and vice versa). En-
gineers need support for detecting and keeping track of such
inconsistencies when modifying the product line’s models or
code base.
Several consistency checking mechanisms have been re-

ported in the literature and have been applied to various
types of models [5–7]. However, there are several draw-
backs with many of these approaches and tools. (i) They
are typically only capable of checking the consistency of en-
tire models in a batch-oriented manner meaning that the
relevant consistency constraints can be evaluated at certain
points in time only (e.g., when saving a model) due to the
complexity of the models. For example, when using a batch-
oriented approach in our DOPLER product line tools [8]
we ran into significant performance problems when working
with real-world variability models of our industry partner
which contain thousands of model elements with non-trivial
dependencies and mappings. The bad performance meant
that feedback could not be provided to modelers immedi-
ately as launching the batch checker after each change to
the model turned out to be infeasible. Checking consistency
after each save of the model has another disadvantage. De-
pending on how many changes engineers made since the last
check many inconsistencies are displayed at once making it
much harder for modelers to relate their modeling actions
with the reported inconsistencies. (ii) Another drawback of
many available consistency checkers is their lack of extensi-
bility. It is complicated for modelers to add new consistency
constraints and to remove or modify existing ones. We also
faced this challenge with our batch-oriented checker as the
various consistency concerns were hard to identify and sep-
arate in the code. (iii) Finally, in product line engineering it
is essential to ensure consistency between models and code.
Changes to the product line are made either to the variabil-
ity models or the actual code base. In both cases developers



or modelers can introduce inconsistencies that need to be de-
tected. Existing checkers are often limited to either models
or to code and do not check across boundaries.
To address these challenges, we started exploring the use

of incremental consistency checking for product line vari-
ability modeling. Our research goals were to improve per-
formance to allow immediate feedback to modelers; to im-
prove the extensibility by making it easy to add, remove, or
modify consistency constraints; and to extend the scope of
consistency checking to model-to-code consistency.
While we benefitted from our earlier experiences with an

existing incremental checker for UML design models [9] we
faced several research challenges when adapting it to model-
based product lines. For instance, checking consistency with
code required a common reasoning basis for model and code.
We thus created a model as an image of the code and applied
incremental transformation to keep the image synchronized
with the code thereby allowing the consistency checker to
operate on the model image instead of the code itself.
The tool features we developed as part of this research are

briefly summarized in a short workshop paper [10]. Here,
we describe details about the approach and its implementa-
tion and report results of a thorough evaluation. We first
introduce different types of possible inconsistencies on and
among different layers of product line models. To illustrate
the practical challenges, we describe consistency constraints
we developed for the component-based product line of our
industry partner. We then present our solution for incre-
mental consistency checking on variability models and de-
scribe its integration in an existing product line engineering
tool suite. We evaluate the approach using product line
models of our industry partner and provide an evaluation
with regard to performance and scalability. We discuss re-
lated work and conclude the paper with an outlook on future
work.

2. CONSISTENCY CHECKING IN
MODEL-BASED PRODUCT LINES

Product line models cover both the problem space and the
solution space [11] as shown in Figure 1. A problem space
model describes the variability of a system using concepts
from the problem domain, e.g., in the language of the users
in a specific domain. A solution space model provides a
representation of the variable system from a technical point
of view, e.g., it describes optional or alternative artifacts
and their dependencies [12].
Consistency needs to be maintained between these mod-

eling spaces but also within each space. However, in order
to be useful, product line models also need to be consis-
tent with the actual code base. Checking and maintaining
consistency with the code base is particularly challenging as
it largely depends on the implementation technology used.
Furthermore, the code base is in practice often changed by
developers outside the product line modeling environment.
Existing variability modeling approaches cover the upper

two levels in Figure 1. Feature models, decision models,
or orthogonal models have been proposed for modeling the
problem space [1–3]. Architecture description languages or
general purpose languages like the UML can be used to de-
fine the solution space. There are also approaches such as
DOPLER [13] or CML (Concept Modeling Language) [12]
that provide modeling support for both levels and mappings

Figure 1: Modeling levels in product lines with types
of intra- and inter-level consistency checks.

between them. Figure 1 shows the three modeling spaces in
product line engineering together with five different types of
consistency checks:
PP inconsistencies can exist within the problem space

model. For instance, in a decision model cycles caused by
decision dependencies need to be detected and prevented.
PS inconsistencies can occur between the problem space

model and the solution space model. For instance, a com-
ponent in the solution space model can have dependencies
to two contradicting decisions. This can result in an incon-
sistency if it is impossible to resolve both decisions during
product derivation.
SS inconsistencies can exist within the solution space mo-

del such as contradicting dependencies between components.
One component might require two other components which
in turn exclude each other.
SC inconsistencies can appear between the solution space

model and the code base it represents. Such inconsistencies
can for example occur whenever an asset (or its dependencies
or attributes) are changed in the solution space model but
not in the code base and vice versa.
CC inconsistencies can exist within the code base. Such

inconsistencies are however typically addressed by integrated
development environments and are thus not further investi-
gated in this paper.

2.1 Modeling a Component-based
Product Line with DOPLER

In cooperation with our industry partner Siemens VAI, we
have been creating variability models for the CC-L2 software
product line controlling continuous casting machines in steel
plants. The (simplified) meta-model for modeling the prob-
lem space, the solution space and the code base is shown in
Figure 2. The product line has been modeled using the DO-
PLER approach which uses decision models to define the
problem space, asset models defining reusable elements of
different types and their dependencies for the solution space,
as well as mappings among decisions and assets [13, 14].
Variation points are represented using Decisions which

have a unique name and a question that is asked to a user
during product derivation. Answering a question sets the
value of a decision. Possible answers depend on the type of
the decision (Boolean, enumeration, string, or number). The
range of allowed values can be further restricted by validity



Figure 2: Partial Siemens VAI meta model with
model elements for the problem space and solution
space. The code base level defines additional ele-
ments for representing the component-based imple-
mentation of the product line.

conditions. Decisions can depend on each other hierarchi-
cally (if a decision needs to be taken before another decision
becomes "visible") or logically (if taking a decision changes
the value of another decision).
Assets represent the solution space in the product line

(e.g., software components). Assets can depend on each
other functionally (e.g., one component requires or excludes
another component) or structurally (e.g., a component is
part of a sub-system). DOPLER allows modeling assets at
arbitrary granularity and with user-defined attributes and
dependencies (based on a given set of basic types). Users
can create domain-specific meta-models to define the types
of assets, their attributes, and dependencies. In the Siemens
VAI product line the asset types in the DOPLER variabil-
ity models are components representing Spring XML com-
ponent descriptions which in turn represent Java Beans and
properties (key-value pairs). Diverse domain-specific depen-
dencies have been defined. For example, a component can
require another component or a property (cf. Figure 2). De-
pendencies between assets and decisions are explicitly mod-
eled via inclusion conditions that define for an asset when it
will be part of a derived product. Due to asset dependen-
cies, not every asset needs to be related with a decision to be
included in a derived product. For example, when an asset
is included because of a decision, its requires dependencies
might lead to the inclusion of other assets as well.
We decided to create a model image of the code base and

apply incremental transformation to synchronize the model
image with the code. This allows us to use the same check-
ing mechanism for all different types of artifacts. For that

reason the meta-model was extended with a code base level
containing the Spring files (c_springfile), the contained Java
Beans (c_javabean) and their properties (c_property), as
well as defines and requires relations among these elements
(cf. Figure 2). Traceability to the solution space model is
achieved by the implements relationship.

2.2 Examples of Consistency Constraints
Figure 1 shows generic types of constraints (PP, PS, SS,

SC, CC) in product line engineering. Here we describe a
number of specific constraints based on these types needed
in the component-based product line of our industry part-
ner. Examples of the constraints are shown in Table 1. To
allow arbitrary checks and freedom for the developer, the
constraints are defined in the Java programming language.
There are, however, no language restrictions and any con-
straint language could be used instead.
The problem space and problem to solution space con-

straints (PP and PS) are relevant in any DOPLER variabil-
ity model. There are simple constraints that check whether
decisions of type enumeration have at least two possible val-
ues (PP1) and that values for model elements with manda-
tory attributes have been defined (PP2). It is also essen-
tial to detect cycles in the decision model stemming from
hierarchical and logical dependencies (PP3–5). PS1 is an
example of a problem-to-solution space inconsistency. The
constraint detects whether inclusion conditions exist in the
solution space (assets) that never can evaluate to true be-
cause they refer to contradictory decisions in the problem
space.
Further constraints depend on the domain-specific meta-

model for Siemens VAI (cf. Figure 2) and address intra-
solution-space and model-to-code consistency. SS1 checks
that each component modeled in the solution space (repre-
senting a Java Bean described in a Spring XML file) requires
at least one property defining initialization parameters for
that component. The most basic model to code constraint
SC1 assures that each component modeled in the variabil-
ity model exists in the code base of the product line. This
constraint assures for example, that outdated components
that are no longer available in the workspace are marked to
be purged in the variability model as well. The constraints
SC2 and SC3 cover the relations between components in the
model, and the relations between Spring XML files in the
file system (which in fact depend on relations between the
Java Beans described in that Spring files). Both constraints
assure that there are no unnecessary relations between com-
ponents and that no relations are missing in the variability
model. Constraints SC4-6 assure the consistency of variant
type components which represent a particular characteristic
of the Siemens VAI models. Variant types are used to group
identical components implemented in different parts of the
code base (different Spring files).
We discuss constraint SC2 in detail to illustrate its high-

level operation sequence: SC2 checks the requires relations
between components. As illustrated in Figure 3 a requires re-
lation between two components in the model is only needed
if it is based on an existing dependency in the product line
code base. Each component is defined by a spring file which
in turn is realized by one or more Java Beans. If at least
one Java Bean contained in the Spring file (Deburrer.xml) re-
quires a Bean defined in the second Spring file (Caster.xml)
then the relation is needed on component level. Otherwise



Table 1: Examples of constraints in component-based product lines.
Constraint Description
PP1: Enumeration
decision

An enumeration decision must have at least two options to choose from.

PP2: Mandatory
attribute

Mandatory attributes of model elements must not be empty.

PP3: Decision effect
cycle

There must be no cycles caused by logical decision dependencies.

PP4: Visibility
condition cycle

There must be no cycles caused by hierarchical decision dependencies (visibility).

PP5: Visibility
condition self reference

A Visibility Condition must not contain a reference to itself.

PS1: Inclusion
condition exclusion

An Inclusion Condition must not contain two contradictory decisions (to avoid
assets that will never be included in a derived product).

SS1: Component
properties

Each component (representing a Java Bean) requires at least one property defining
initialization parameters for the Bean.

SC1: Component
matching

Each component in the variability model must exist in the product line code base.

SC2: Component
relation

Relations between components in the variability model must also exist in the
product line code base.

SC3: Java Bean
relation

A relation between Java Beans must be represented in the variability model as a
component relation.

SC4: Variant type
relation

Variant types must not have requires relations.

SC5: Variant type
occurrence

If two or more components are identical all of them must contribute to the same
variant type component.

SC6: Variant type
consistency

Only identical components must contribute to a single variant type component.

Figure 3: Schematic view of Constraint SC2.

the consistency check will reveal an obsolete relation be-
tween the two components. Although SC2 is fairly simple it
is important to note that such constraints have to be eval-
uated many times in complex models. For example, SC2
needs to be evaluated for each requires relationship among
two components (and there are thousands of such relation-
ships in our models).

3. INCREMENTAL CONSISTENCY
CHECKING ON VARIABILITY MODELS

Earlier in our research we had developed a batch-oriented
checker that worked well with small variability models and a
limited number of constraints. However, this approach did
not scale well enough for larger models and high number
of required consistency constraints that we encountered in
industrial practice. In particular, modelers requested im-
mediate feedback regarding consistency after changes to the
model. While technically it would have been possible to re-
alize immediate feedback with a batch checker, the compu-
tational cost made it impractical to report inconsistencies
after each change. Previously, our approach thus only re-
ported inconsistencies after a user invoked the checker when
saving the model in the tool. Typically many changes were
made by modelers between two invocations of the checker
and multiple new errors were reported at once. This made
it difficult for modelers to relate the errors to the changes
they made to the model or in the code base – changes that
were made minutes or even hours earlier. Also, our batch-
oriented checker was difficult to extend or adapt because
the consistency constraints were woven together into a large,
complex algorithm. This was a big obstacle to the practical
use of consistency checking because new constraints were
increasingly hard to integrate in the existing algorithm.
We thus integrated an incremental consistency checker [9]

to help modelers with detecting and tracking inconsistencies
correctly and quickly after every change. The incremental
checker is fully automated and does not require manual as-



sistance. It can be used to provide consistency feedback in
an intrusive or non-intrusive manner. However, thus far the
checker had only been used and evaluated for UML models
that seem to be similar to our models, however exhibit quite
a range of differences which required significant extensions.
For example, as discussed in Section 2 and shown in Table 1
many of our consistency constraints go beyond the checking
of models and also include source code and other artifacts.
Since the existing approach was limited to checking mod-
els, we had to augment it with incremental transformation
to automatically and quickly transform code fragments into
model fragments to enable their checking.
To support the fast incremental checking of model changes,

our checker [9] identifies all model elements that affect the
truth value of any given consistency constraint (consistency
is a Boolean state). A consistency constraint needs to be
re-evaluated if one of these model elements changes. We re-
fer to this set of affected model elements as the scope of a
consistency constraint. The elements contained in the scope
are stored in the scope database. Identifying the scope is
simple in principle, however, it is not possible to predict it
in advance.
Our incremental consistency checker computes the change

impact scope of a constraint instance automatically by ob-
serving the run-time behavior of consistency constraints dur-
ing their evaluation. To this end, we developed the equiva-
lent of a profiler for consistency checking. The profiling data
is used to establish a correlation between model elements
and consistency constraints. Based on this correlation, it
then decides when to re-evaluate consistency constraints and
when to display inconsistencies – thus allowing an engineer
to quickly identify all inconsistencies that pertain to any
part of the model of interest at any time.
We illustrate the incremental consistency checker using

consistency constraint SC1 (cf. Table 1) evaluating whether
a modeled component is implemented in the source code.
Figure 4 depicts a (simplified) excerpt of one of our models
with three components in the top and a range of code-level
constructs at the bottom. Consistency constraint SC1 is
written from the perspective of a component – i.e., a given
component is considered consistent if it is implemented by
a code-level XML file. Since there are three components in
Figure 4, each component has to be evaluated with regard
to SC1. Our approach thus instantiates the consistency con-
straint SC1 three times, once for each component (ci1, ci2,
ci3). We do this because incremental consistency checking
needs to react to model changes and each instance of the con-
sistency constraint is affected differently by model changes.
This means that we need to compute how each consistency
constraint or instance thereof is affected by a model change.
For this purpose, we need to know the complete change im-
pact scope for every constraint instance. Figure 4 indicates
that the three SC1 instances ci1, ci2, and ci3 access distinct
model elements when they are evaluated.
For example, the first instance ci1 starts its evaluation at

component Deburrer, then navigates along the implements
relationship, and finally accesses Deburrer.xml. The con-
straint instance is satisfied because the component does have
an associated code-level XML file. Our approach recognizes
that from the entire model only these accessed model ele-
ments were needed to evaluate instance ci1. This instance
must be re-evaluated only if one of those elements changes.
Our approach thus maintains a table of instances of con-

Figure 4: Incremental Evaluation of SC1 and SC2.

sistency constraints and the model elements they accessed
during their evaluation to understand which instances must
be re-evaluated when the model changes. There are a range
of subtle issues (e.g., a chicken and the egg problem in that
there must be an initial evaluation to build up the table be-
fore the incremental mechanism can take over). These issues
are discussed in [9] and are out of the scope of this paper.
It is also important to note that a model element may be
accessed by multiple instances of one or more consistency
constraints. For example, constraint SC2 evaluates a com-
ponent with regard to the requires relationship. It makes
sure that a component-level requires relationship is matched
by a code-level requires relationship. Figure 4 depicts a
requires relationship from Deburrer to Caster and during
evaluation an instance of SC2 will access the components,
their code-level XML files Deburrer.xml and Caster.xml and
some of the defines and requires relationships underneath.
The change impact scope of this instance of SC2 is also auto-
matically observable through the model profiler. This scope
is also larger than the scope of SC2 and encompasses much
of the model elements underneath Deburrer and Caster but
not NozzleCheck. Some model elements, such as Debur-
rer.xml thus affect multiple instances of consistency con-
straints. Only these related instances must be re-evaluated
if Deburrer.xml changes.

4. USING THE INCREMENTAL CHECKER
IN THE DOPLER TOOL SUITE

A major goal when developing our incremental consis-
tency checker was to increase usability by providing immedi-
ate feedback to modelers about the detected inconsistencies.
We thus decided to seamlessly integrate the incremental con-
sistency checker in the Eclipse-based DOPLER tool suite [8]
which supports product line variability modeling and prod-
uct derivation. In particular, we integrated the checker with
DOPLER’s modeling tool that allows defining decision and
asset models as discussed in Section 2.
A modeler can define assets in the variability model editor

as shown in Figure 5. The Asset Overview shows an outline
of already available software components. This view allows
adding or removing components. Selected components can



Figure 5: The DOPLER Variability Modeling Tool.
The Incremental Consistency Checker identifies er-
rors and displays them in an Error View.

be modified in the Asset Detail View which provides infor-
mation about its attributes and relations to other compo-
nents. The modeler can simply add or remove relations to
other components via drag and drop in the detail view. Ma-
nipulating components in the editor has an immediate effect.
For instance, after adding a relation to another component
all involved constraints (and only those!) are re-evaluated.
Feedback about detected errors is provided within millisec-
onds after the user action leading to an inconsistency. The
Error View provides information about all inconsistencies
found in the model. The Error View also provides details
about the source model elements causing the problem. This
helps the modeler to resolve the problem, for instance, by re-
moving an unneeded relation between two components from
the model.
The existing incremental consistency checker was origi-

nally developed for the Rational Rose UML tool suite, while
in this project it had to be integrated in the DOPLER tool
suite. Numerous adaptations were required to embed the
checker which cannot be described here due to space con-
straints.
The DOPLER Variability Model Editor allows creating and

updating variability models as described above. We illus-
trate our tool architecture by discussing the chain of events
and data flow (cf. Figure 6).
The incremental consistency checker relies on tracking

changes in the Eclipse workspace. For that purpose, our

Figure 6: The Incremental Consistency Checker re-
evaluates constraint instances after changes to the
model.

Eclipse Change Tracker [15] observes arbitrary changes to the
variability model and the Eclipse workspace. For instance,
it listens to the "delete component" change to the variability
model after the modeler deletes a component in the editor
and propagates the change to the Constraint Manager which
is responsible for initializing, managing, and storing con-
straints. Using the Scope Database the Constraint Manager
determines the constraint instances to be re-evaluated af-
ter the deletion of a certain component. Our architecture
makes use of the Eclipse extension point mechanism to allow
adding new constraints flexibly and easy for new domains.
Constraint definitions can easily be added or removed from
the evaluation process by simply activating or deactivating
plugins.
The list of constraint instances is used by the Incremen-

tal Consistency Checker which applies incremental checking
to variability models by controlling the execution of all af-
fected constraint instances. The constraint instances do not
directly access and query the Variability Model. Instead, they
use the Model Access Tracker – a model adapter component
which monitors and records all read access events to model
elements for each single constraint instance that is evalu-
ated. This fine-grained "model profiling" helps improving
performance, because with each level of detail fewer con-
straint instances need to be evaluated eventually. The Model
Access Tracker also builds the Scope Database ensuring that
only necessary constraints are re-evaluated after changes to
the model (not shown in Figure 6).
The incremental consistency checker sends all newly found

inconsistencies to the Error Manager which manages a list of
errors for the user. It translates abstract constraint evalua-
tion results into error messages meaningful for a modeler and
performs basic filtering functions to avoid information over-
load. Finally, the Error Viewer (see also Figure 5) displays
the detected inconsistencies for the evaluated constraint. We
use the Eclipse marker mechanism for the easy management
of errors and their presentation in a viewer.

5. EVALUATION
We define our evaluation goal using the Goal-Question-



Metric (GQM) approach [16]. A goal in GQM consists of
a purpose describing the actual aim of the evaluation, the
issue of interest, a specific object to be measured and the
viewpoint which describes the stakeholder perspective from
which the goal is defined. Goals are refined using questions
targeting explicit problems of interest. Finally, metrics are
defined to obtain data addressing those questions. Our eval-
uation goal is to assess (purpose) the performance (issue) of
incremental consistency checking (object) from the viewpoint
of the modeler (viewpoint). We explore three questions re-
garding performance, memory usage, and scalability of the
approach.
Question 1.1 "What impact does the incremental consis-

tency checking technique have on the start-up performance?"
is further refined using two metrics: M 1.1.1 is the time
needed to initialize the incremental consistency checker (mea-
sured in milliseconds). It measures the overall start-up time
when opening a variability model and includes library ini-
tializations as well as the creation of the scope database.
The startup time is critical as engineers frequently open
models in the DOPLER tools. M 1.1.2 measures the initial
memory footprint of the incremental consistency checker af-
ter its start-up expressed by the number of objects created
(i.e., constraint instances, scope elements). Understanding
memory consumption is important as developers modeling
real-world product lines have to work with very large models
containing thousands of model elements.
Question 1.2 "What are the specific performance charac-

teristics of the incremental consistency checker during mod-
eling?" is further defined with metric M 1.2.1 measuring the
time needed (in milliseconds) for consistency checking of key
atomic modeling tasks such as adding, modifying, or delet-
ing model elements. This metric is important as it shows
the feasibility of the approach during everyday modeling ac-
tivities. In particular, it shows whether the approach can
provide "immediate feedback" to modelers.
Question 1.3 "How well does the approach scale?" inves-

tigates performance and memory consumption of our ap-
proach when applied to industrial models of different sizes.
We compute the metrics M 1.1.1., M 1.1.2, and M 1.2.1 for
real-world models of different sizes to address this question.
In addition we use another metric to investigate this ques-
tion. M 1.2.2 measures the number of constraint instances
that need to be evaluated for the atomic modeling actions.
This metric checks whether the approach scales regardless
of the specific modeling actions performed by the user.

5.1 Evaluation Setup
We used variability models of the Siemens VAI CC-L2

product line to perform our evaluation. Regarding ques-
tion 1.3 we evaluate the incremental checker with different
model sizes. We thus created models of different sizes by in-
crementally merging the available variability models using
the merging approach described in [4]. The smallest vari-
ability model (I) represents a single subsystem and consists
of 57 components. We use two other models II and III for
evaluation with 200 and 401 components. The largest model
IV consists of 768 components. The underlying code base
used for evaluation contains 1956 code model elements (702
XML spring files and 1254 Java Beans) and is used in all
four models I-IV.
Table 2 provides a detailed overview of the four models

regarding the number of components (# C’s), number of

Table 2: Siemens VAI solution space models used
for evaluation.

Included subsystems #
C’s

#
CI’s

#
SE’s

I Cutting 57 1044 2084
II Model I subsystems + Caster,

Heating
200 1902 3385

III Model II subsystems +
Optimizer, JAMP, Simulator

401 3108 5180

IV Model III subsystems + Analysis,
DefectTracking, VAIQfeeder,
Warmstart

768 5310 8175

instantiated constraints (# CI’s), and the total number of
instantiated scope elements (# SE’s) at startup. A con-
straint is instantiated for each model element only if needed
as explained in Section 3. The scope database contains all
scope elements defining the constraint instances that need to
be re-evaluated after a change. The actual number of model
elements is much higher in these models as we only show
assets of type of Component in the table and do not con-
sider the number of relations and model element attributes
in Table 2.

5.2 Evaluation Results
We present the results gained by comparing the four dif-

ferent models in terms of startup and runtime performance
when applying the incremental consistency checker.
The mechanism for incremental consistency checking re-

lies on a complete execution of all constraints during startup
to initialize the constraint instances and the scope database
(scope elements need to be created). Figure 7 provides an
overview of the initialization costs of the incremental checker
for the four different models (lower solid line). The addi-
tional time needed to open a variability model lies between
2,5 seconds for a model with about 200 assets, and 5 seconds
for a model with 400 assets. This time is clearly acceptable
for typical model sizes at our industry partner (100 to 400
components per single model). Also, this task is performed
as a background thread when opening a model and does not
block the modeler (even in the case of model IV where the
initialization takes about 14 seconds).
The lower solid line is essential for the evaluation of the

incremental checker. However, we made an additional inter-
esting observation. Re-structuring the constraints already
implemented in our legacy batch checker into the new for-
mat required by the incremental checker already had a sig-
nificant impact on performance. We compared the complete
time of executing all constraint instances with the initial-
ization time of our legacy batch-checking approach. The
dashed line demonstrates the scalability issues we had ex-
perienced with the batch-checking approach. Please note,
however, that the legacy checker is not fully comparable in
terms of the constraints it checks.
Besides the initialization time, we also took a closer look

at the memory costs (M 1.1.2). Memory consumption de-
pends on the number and type of constraints and the number
of model elements. The maximum number of constraint in-
stances is created if every constraint is instantiated once for
every asset in the model and every asset in the code base
(this is only a theoretical case). Instead, constraints are
typically instantiated for selected types of asset only (e.g.,



Figure 7: Metric M 1.1.1. Initialization time of
the new incremental checker and evaluation time of
legacy batch checker for models I-IV.

components) and the real number of constraint instances
per model is therefore much lower than the theoretical max-
imum.
The maximum number of scope elements can be calcu-

lated as the number of assets times the number of attributes
per asset. Scope elements are created only once, but can be
used in multiple constraint instances. Figure 8 shows the
linear increase of scope elements and constraint instances
for the four variability models demonstrating the scalability
of our approach.

Figure 8: Metric M1.1.2. Number of constraint in-
stances and scope elements after startup (models
I-IV).

In Section 4.1 we described a number of basic tasks when
working with the DOPLER variability modeling tool. We
use these typical actions on variability models to gain data
concerning the time needed to evaluate model changes at
runtime. We simulate creating and deleting assets, as well as
adding and removing relations for our live evaluation (metric
M 1.2.1) and the analysis of affected constraints during one
evaluation cycle (metric M 1.2.2).
For live evaluation analysis each single task has been per-

formed 100 times to outweigh effects such as unpredictable

Figure 9: Metric M 1.2.1. Performance of basic
modeling actions for models I-IV.

background tasks. The mean value gained is shown in Fig-
ure 9. The costs for adding assets, as well as adding and re-
moving relations to/from an asset remains constant in terms
of model size. A single action performed on a variability
model took only about 5 to 10 ms which demonstrates that
our approach indeed provides immediate feedback.
Only the task of deleting an asset from a model increases

linearly. This is because constraints that were instantiated
for the asset to be deleted, need to be found and removed
from the consistency checking instance. We expect however
that this problem can be easily fixed by using a different
data structure.
While constraint instances and scope elements in total in-

crease depending on model size (as shown in Figure 8), the
number of constraint instances that need to be re-evaluated
during live evaluation stays constant. Depending on the
type of change very few constraints need to be evaluated
(see Figure 10). The number of constraints that need to be
evaluated remains constant when adding assets in models
of different size. Adding and deleting relations as well as
deleting component moves between 2.5 and 3.2 constraints
evaluated per change event, again tested on 100 change sam-
ples.

6. RELATED WORK
Several papers address the issue of consistency between

models and code in product lines. Approaches for product
line evolution try to avoid the erosion of a product line,
i.e., the deviation from product line models up to the point
where key properties no longer hold, e.g., [17]. Murta et al.
[18] present an approach for ensuring consistency of archi-
tectural models to implementation during evolution. Their
approach support arbitrary evolution policies and is based
on recording changes in a configuration management sys-
tem. Product line evolution support becomes critical in
model-based approaches to ensure consistency after changes
to meta-models, models, and actual development artifacts.
Mende et al. [19] describe tool support for the evolution
of software product lines based on the "grow-and-prune"



Figure 10: Metric M 1.2.2. Number of constraint
instances affected by a change for models I-IV.

model. They support identifying and refactoring code that
has been created by copy & paste and which might be moved
from product to product line level. Deng et al. [20] describe
a model-driven product line approach that addresses the is-
sue of domain evolution in product line architectures with
model transformations.
While researchers generally agree on the importance of

consistency checking, the methods on how to detect detect
them vary widely. For example, Tsiolakis and Ehrig [7]
present an approach for checking the consistency between
class and sequence diagrams based on a common graph struc-
ture. Van der Straeten et al. [21] use description logic to
detect inconsistencies between sequence and state chart dia-
grams. Campbell et al. [22] use a model checker to evaluate
inconsistencies within and across UML diagrams. Zisman
and Kozlenkov [23] use a knowledge base and express con-
sistency rules using patterns and axioms.
Several approaches are based on identifying inconsisten-

cies between different design models by direct comparison.
Some of these approaches also perform incremental consis-
tency checking. xLinkIt [24] allows evaluating the consis-
tency of XML-based documents. The approach can check
the consistency of entire UML models but can also handle
incremental consistency checking by only evaluating changes
to versions of a document. ArgoUML [25] detects inconsis-
tencies in UML models based on annotated consistency rules
that also enable incremental consistency checking. The ap-
proach implements two consistency checking mechanisms:
consistency rules without annotations are placed into the
queue which is continuously evaluated in the background
using a batch-checker at 20% CPU time. Consistency rules
with annotations are evaluated using an incremental checker.
It has been demonstrated that ArgoUML’s type-based con-
sistency checking produces good performance but it is not
able to keep up with an engineer’s rate of model changes in
very large models [26]. Similar to our approach Blanc et al.
[27] address the issue of incremental consistency checking
from the perspective of model changes. However, their con-
sistency rules need to be defined explicitly in terms of their

impact on changes. If done correctly this leads to good per-
formance. However, since writing these annotations may
easily cause errors, they are no longer able to guarantee the
correctness of incremental consistency checking.
While it is important to know about inconsistencies, it is

often too distracting to resolve them right away. The notion
of "living with inconsistencies" [28] advocates that there is
a benefit in allowing inconsistencies in design models on a
temporary basis. While our approach provides inconsisten-
cies instantly, it does not require the engineer to fix them
instantly. Our approach tracks all presently-known incon-
sistencies and lets the engineer explore inconsistencies ac-
cording to his/her interests in the model.

7. CONCLUSIONS AND FUTURE WORK
We presented a tool-supported approach and evaluation

results of applying an incremental consistency checker on
product line variability models. The incremental consis-
tency checker works on and across different levels of vari-
ability models and also checks consistency between variabil-
ity models and source code. The incremental consistency
checker is independent from the domain-specific DOPLER
meta-model and can be easily used with arbitrary meta-
models. As our event tracking mechanism allows to iden-
tify changes down to the level of model element attributes
only few constraints need to be evaluated during incremen-
tal consistency checking. Our evaluation with large-scale
models demonstrates the performance and scalability of the
approach. It is fast enough to provide immediate feedback to
users and identifies errors within 5 to 10 ms for typical mod-
eling actions. Furthermore, our approach allows adding new
constraints in a flexible manner via Eclipse extension points.
Constraints can be activated and deactivated as needed in
certain domains.
In future work we will experiment with more and other

types of constraints. We will also investigate how the de-
pendencies among constraints can be exploited during con-
straint evaluation. Finally, we plan to extend our tools to
support fixing identified inconsistencies as already demon-
strated in [29].
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