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Abstract. The problem of consistently engineering large, complex software 
systems of today is often addressed by introducing new, “improved” models. 
Examples of such models are architectural, design, structural, behavioral, and 
so forth. Each software model is intended to highlight a particular view of a de-
sired system. A combination of multiple models is needed to represent and un-
derstand the entire system. Ensuring that the various models used in develop-
ment are consistent relative to each other thus becomes a critical concern. This 
paper presents an approach that integrates and ensures the consistency across an 
architectural and a number of design models. The goal of this work is to com-
bine the respective strengths of a powerful, specialized (architecture-based) 
modeling approach with a widely used, general (design-based) approach. We 
have formally addressed the various details of our approach, which has allowed 
us to construct a large set of supporting tools to automate the related develop-
ment activities. We use an example application throughout the paper to illus-
trate the concepts. 

1   Introduction  

The software community places great hopes on software modeling notations and 
techniques to ease a variety of development challenges. The intellectual toolset avail-
able to software developers has been steadily enriched with more powerful and more 
comprehensive models. At the same time, the growing number of heterogeneous 
models has resulted in an observable split within this community: one part of the 
community is working on and with special-purpose development models; another part 
focuses on general-purpose models. Special-purpose models tend to focus on individ-
ual software development issues and are typically accompanied by powerful analyti-
cal evaluation tools. General-purpose models, on the other hand, address a wider 
range of issues that arise during development, typically resulting in a family of mod-
els that span and relate those issues. 

This split has impacted the two communities’ visions of how software develop-
ment challenges are best addressed.  A special-purpose approach is typically centered 
around a single design notation with a narrow modeling and analysis focus (e.g., an 
architecture description language, or ADL [14]). A general-purpose approach em-
braces a family of design notations with a much broader, system-wide focus (e.g., the 
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Unified Modeling Language, or UML [1]). Thus, for instance, UML emphasizes 
modeling practicality and breadth, while ADLs tend to emphasize rigor and depth. 
Both these perspectives are needed to address the broad spectrum of rapidly changing 
situations that arise in software development. Our previous work has demonstrated 
that the two perspectives can indeed play complementary roles in modeling and ana-
lyzing software architectures [10,12,16]. We have recently begun using combinations 
of the general- and special-purpose approaches to aid us in the task of sound software 
refinement: refining high-level software models (i.e., architectures) into lower-level 
models (i.e., designs and implementations) in a manner that preserves the desired 
system properties and relationships [7]. 

This paper discusses the issues we have encountered in attempting to bridge the 
two perspectives and the solutions we have developed to address those issues. In 
particular, we have augmented our ADL-based approach to modeling, analysis, simu-
lation, and evolution of architecturally relevant aspects of a system (e.g., system-level 
structure and interactions, performance, reliability), with the strengths of UML: sup-
porting a broad range of both high- and low-level development concerns with a 
widely adopted, standard notation.  

Integrating an ADL-based approach with UML is a non-trivial task. One difficulty 
arises from the difference in the modeling foci, language constructs, and assumptions 
between an ADL and UML. Therefore, the first critical challenge is to ensure that the 
model, as specified in the ADL, is transferred into UML as faithfully as possible, and 
vice versa. Another difficulty is a by-product of the numerous modeling notations 
within UML (component, class, object, state chart, use case, activity, etc. diagrams): 
one view of a system model, as depicted in one notation (e.g., class diagram), may be 
inconsistent with another view, as depicted in another notation (e.g., activity dia-
gram). Thus, the second critical challenge is to ensure that changes made in one view 
are reflected as faithfully as possible in another. 

We have developed and exploited two techniques to deal with these two chal-
lenges. They are illustrated in Figure 1. The figure depicts the relationship between 
the UML modeling constructs (“Core UML”) and the constructs of an ADL, such as 
Rapide [6] or C2 [18]. As indicated in the figure, only a certain, small number of 
ADL constructs can be represented in “Core UML”. This should come as no surprise 
since, as discussed above, ADLs are special-purpose notations that tend to favor rigor 
and formalism - concepts that are less present in UML due to its practitioner-oriented, 

general-purpose nature. 
However, UML provides a 
mechanism that allows 
“Core UML” to be ex-
tended to address new 
modeling needs (depicted 
by the “UML Extensibility 
Mechanism” ellipse in 
Figure 1). We exploit this 
feature of UML to address 
the first challenge: sup-
porting the transformation 
of an ADL model into a 
UML model and vice 
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Fig. 1.  Extending and Augmenting UML; challenges to 
represent ADL and analysis Constructs in UML. 



versa.1 The second challenge deals with ensuring the consistency across UML’s mod-
eling notations. Since this area has not been addressed by the designers of UML, the 
strategy we pursue is to augment UML with constructs that maintain the relationships 
among the modeling elements across different notations (depicted by the “View 
Analysis Constructs” ellipse in Figure 1). In tandem, the two techniques allow us to 
specify, refine, and integrate the heterogeneous models supported by an ADL and by 
the different UML notations, alleviating the shortcomings of both languages in the 
process. 

The remainder of the paper is organized as follows.  Section 2 presents our ap-
proach to software architecture modeling, analysis, and simulation. Section 3 outlines 
our technique for transferring architectural decisions into UML. Section 4 focuses on 
ensuring the consistency among UML models, both across different UML notations 
and across levels of abstraction (e.g., high-level vs. low-level design). Our conclu-
sions round out the paper. 

2   Our Approach to Architecture-Based Development 

The concepts discussed in this paper are independent of the application domain, the 
specifics of the chosen architectural style, and the modeling language(s). For 
illustration purposes, we have selected the C2 architectural style [18]. C2 serves 
solely as a vehicle for exploring our ideas. It allows us to discuss the development 
issues relevant at the architectural level and motivates the discussion of transforming 
an architectural model into UML. This section also highlights certain approaches to 
software modeling and analysis that are not available in UML.  

An architecture in the C2 style consists of components, connectors (buses), and 
their configurations. Each component has two connection points, a “top” and a 
“bottom.” Components communicate solely by exchanging messages. The top 
(bottom) of a component can only be attached to the bottom (top) of one bus. It is not 
possible for components to be attached directly to each other: buses always have to 
act as intermediaries between them. However, two buses can be attached together. 

We illustrate the above concepts with an example. The architecture we use is a 
logistics system for routing incoming cargo to a set of warehouses, shown in Figure 2. 
The DelPort, Vehicle, and Warehouse components are objects that keep track of the 
states of a delivery port, a transportation vehicle, and a warehouse, respectively. Each 
may be instantiated multiple times in a system. The DelPortArt, VehicleArt, and 
WarehouseArt components are responsible for graphically depicting the states of their 
respective objects to the end-user. The CargoRouter organizes the display based on 
the actual number of port, vehicle, and warehouse instances in the system. The Clock 
provides consistent time measurement to interested components, while the 
NextShipment component determines when cargo arrives at a port, keeps track of 
available transport vehicles at each port, and tracks the cargo during its delivery to a 
warehouse. The GraphicsBinding component renders the drawing requests sent from 
the CargoRouter using a graphics toolkit, such as Java’s AWT. The five connectors 

                                                           
1 Note that a portion of Rapide falls outside this “extended UML” in Figure 1. This is a reflec-

tion of the fact that UML is not always able to support all features of a given ADL [12]. 



receive, filter, and route the messages 
sent by components to their 
appropriate recepients. 

2.1   Architectural Analysis 

To support architecture modeling, 
analysis, implementation, and 
evolution, we have developed a 
formal type system for software 
architectures [8,11,13]. We treat every 
component specification at the 
architectural level as an architectural 
type. We distinguish architectural 
types from basic types (e.g., integer, 
boolean, string, array, record, etc.). A 
component has a name, a set of 
internal state variables, a set of 
interface elements, an associated behavior, and (possibly) an implementation. Each 
interface element has a direction indicator (provided or required), a name, a set of 
parameters, and (possibly) a result. Component behavior consists of an invariant and a 
set of operations. The invariant is used to specify properties that must be true of all 
component states. Each operation has preconditions, postconditions, and (possibly) a 
result. Like interface elements, operations can be provided or required. The 
preconditions and postconditions of required operations express the expected 
semantics for those operations. We separate the interface from the behavior, defining 
a mapping function from interface elements to operations. This function is a total 
surjection: each interface element is mapped to exactly one operation, while each 
operation implements at least one interface. An interface element can be mapped to an 
operation only if the types of its parameters are subtypes of the corresponding 
variable types in the operation, while the type of its result is a supertype of 
operation’s result type. This property directly enables a single operation to export 
multiple interfaces. 

This set of definitions allows us to formally treat two distinct development 
activities: evolution of individual components via subtyping [8] and analysis of an 
architecture for conformance among interacting components. In this paper we focus 
on the latter. The left side of Figure 3 shows the relevant definitions of interface 
parameter conformance and operation conformance.2 The right side of Figure 3 is a 
reflection of our experience that components need not always be able to fully 
interoperate in an architecture, but that mismatches should be allowed under certain 
situations (e.g., COTS reuse). The two extreme points on the spectrum of type 
conformance are: minimal type conformance, where at least one service (interface and 

                                                           
2 The definitions are specified in Z, a language for modeling mathematical objects based on 

first order logic and set theory [17]. Z uses standard logical connectives (∧, ∨, ⇒, etc.) and 
set-theoretic operations(∈, ∪, ⊆, etc.). The complete formal defintion of the type system is 
given in [11]. 
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Fig. 2. Architecture of the cargo routing system 



corresponding operation) required by each component is provided by some other 
component along its communication links; and full type conformance, where every 
service required by every component is provided by some component along its 
communication links. 

2.2   Example of Architectural Analysis 

We illustrate architectural type conformance with a simple example drawn from 
the cargo routing application (recall Figure 2). Figure 4 shows partial models of the 
DelPort and DelPortArt components, specified in the C2SADEL ADL [13]. The two 
components are intended to interact in the cargo routing system (i.e., there is a 
communication path between them in the architecture via StateConn and ArtistConn). 
In the example from Figure 4, DelPortArt requires one service: unloadShipment, 
which is mapped to its operation or1. DelPort provides an operation, op1, with a 
matching interface (as required by the interface parameter conformance predicate in 
Figure 3). Thus, to establish type conformance, we must make sure that the pre- and 
postconditions of the two operations are properly related as specified in the operation 
conformance and minimal type conformance predicates in Figure 3. To do so, we 
must establish that the following relationships hold: 

• DelPortArt or1 pre ⇒ DelPort op1 pre 
  (s ∉ contents) ⇒ true 

  Since DelPort’s op1 does not have any preconditions, the right-hand side (RHS) 
of the implication becomes true. Therefore the entire implication evaluates to 
true regardless of the truth value of its left-hand side (LHS). 

• DelPort op1 post ⇒ DelPortArt or1 post 
  ((~cap = cap + ShpSize(s)) ∧ (s ∈ ~cargo)) ⇒ (s ∈ ~contents) 

Fig. 3. Formal specification of architectural type conformance predicates 



  The two matching interface elements (unloadShipment) of the DelPort and 
DelPortArt components have matching parameters (s), which are mapped to the 
respective components’ operation variables (also s). DelPortArt’s variable 
contents is of type STATE_VARIABLE, which is intended to generically describe 
the internal state of another component in a required operation.3 contents can 
be unified with the DelPort internal state variable cargo, so that the implication 
becomes 
  ((~cap = cap + ShpSize(s)) ∧ (s ∈ ~cargo)) ⇒ (s ∈ ~cargo) 
  This implication is of the form (A ∧ B) ⇒ B and is also true: an implication 
can be false only if its RHS (B) evaluates to false; however, in this case that would 
result in the LHS (A ∧ B) also evaluating to false, making the implication true.  

 
We have thus established that, at the least, minimal type conformance holds in the 
architectural interaction between DelPort and DelPortArt. 

2.3   Architectural Simulation 

The example above demonstrate how an architecture can be analyzed statically for 
desired properties. Another way in which we have been able to analyze C2-style 
architectures has been through early simulations of applications, built based on the 
applications’ architectural models. To this end, we have exploited C2’s event-based 
nature: one can rapidly construct a partial implementation of an architecture that 
mainly focuses on the components’ external (asynchronous message) interfaces. For 
example, a prototype of the cargo routing application discussed above was initially 
implemented and later augmented to include a foreign-language user interface by a 
single developer in a matter of hours [2]. Our support tools also allow insertion of 
event monitors and filters to explicitly observe message traffic and assess dynamic 
properties of the architecture. Any inconsistencies in the architecture not detected by 
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component DelPortComponent is { 
state { cap : Int; max_cap : Int; 
        cargo : \set Shipment; 
        ShpSize : Shipment -> Int } 
invariant { cap \eqgreater 0 \and 
            cap \eqless max_cap; } 
interface { 
   prov ip1: unloadShipment(s : Shipment); 
   req ir1: Tick(); } 
operations { 
   prov op1: { 
      let s : Shipment; 
      post (~cap = cap + ShpSize(s)) 
           \and (s \in ~cargo); } 
   req or1: { 
      let time : STATE_VARIABLE; 
      post ~time = 1 + time; } } 
map { 
   ip1 -> op1 (s -> s); 
   ir1 -> or1 (); } 
} 

component DelPortArtComponent is { 
state { selects : \set Int; 
        UniqueID : Int \x Int -> Int; } 
invariant { #selects \eqgreater 0; } 
interface { 
   prov ip1: selectShipment(port : Int; 
                            shp : Int); 
   req ir1: unloadShipment(s : Shipment); } 
operations { 
   prov op1: { 
      let pid : Int; sid : Int; 
      post (#~selects = #selects + 1) \and 
           (UniqueID(pid,sid) \in selects); } 
   req or1: { 
      let s : Shipment; 
          contents : STATE_VARIABLE; 
      pre (s \not_in contents); 
      post (s \in ~contents); } } 
map { 
   ip1 -> op1 (port -> pid, shp -> sid); 
   ir1 -> or1 (s -> s); } 
} 

Fig. 4. Partial specification of the DelPort and DelPortArt components. # denotes set cardinal-
ity; ~ denotes the value of a variable after the operation executes; STATE_VARIABLE is a 
placeholder for any basic type 



type conformance checking, such as inconsistencies in component interaction 
protocols, are likely to manifest themselves during simulations. 

2.4   Tool Support 

The activities described in this section (architecture modeling, analysis, simulation, 
implementation, and evolution) are supported by DRADEL, a component-based 
development environment [13], and a light-weigt simulation and implementation 
infrastructure [9]. Three of DRADEL’s components are particularly relevant to this 
discussion (a fourth component will be discussed in Section 3): 
• The TopologicalConstraintChecker component analyzes an architecture for 

adherence to design heuristics and architectural style rules. Currently, this 
component ensures the rules of the C2 style, but can be easily replaced with 
components enforcing other kinds of design rules. 

• The TypeChecker component implements the rules of our architectural type 
system, briefly discussed in Section 2.1. The TypeChecker automatically performs 
the conformance checks such as those shown in Section 2.2. 

• The CodeGenerator component automatically generates architecture 
implementation skeletons discussed in Section 2.3. The skeletons are generated 
based on a component’s architectural model specified in C2SADEL: all message 
generation, marshalling, and unmarshalling code is produced, as is a stub for the 
component’s internal (application-specific) behavior. Component stubs are then 
completed manually. The amount of effort needed to complete a stub depends on 
the desired faithfulness of the prototype implementation to the final system and it 
can range from a few to several hundred lines of code. 

3   Refining an Architectural Model into a UML Model 

Once an architectural model is constructured and its analysis and simulation 
demonstrate the presence (or absence) of properties of interest, the model can be used 
as a basis for system design and implementation. This requires the transfer of 
information from the architectural model to a (high-level) design and subsequent 
refinement of that design. One way to effectively accomplish this task is by 
transferring the application model from an ADL to a notation better suited for 
addressing lower-level design issues. We employ UML [1] to that end. 

UML is a semi-formally defined design language with a large, extensible set of 
modeling features that span a number of modeling diagrams (see Section 1). Our 
previous work has studied in depth the relationsip between ADLs and UML 
[10,12,16]. One outcome of this research has been a set of well-defined strategies one 
could employ to meaningfully transfer an ADL model into UML. Based on this work, 
we have recently augmented the DRADEL environment discussed in Section 2.4 to 
include UMLGenerator, a component that transforms a C2SADEL specification into a 
UML model. UMLGenerator uses a set of formally defined rules that specify how 
each C2SADEL construct is transformed into a corresponding (set of) UML 
construct(s). The rules make use of predefined UML constructs, as well as 



stereotypes, UML’s built-in extensibility mechanisms. Stereotypes allow the addition 
of attributes to existing modeling elements (via tagged values) and the restriction of 
modeling element semantics (via constraints). The constraint portion of a stereotype 
is formally specified in UML’s Object Constraint Language (OCL) [19]. For example, 
the compositional rules of the C2 architectural style, discussed in Section 2, can be 
specified using a UML stereotype as follows. 

 
Stereotype C2Architecture for instances of meta class Model 
[1] A C2 architecture is made up of only C2 model elements. 

SELF.OCLTYPE.MODELELEMENT->FORALL(ME|ME.STEREOTYPE= C2COMPONENT OR 
ME.STEREOTYPE = C2CONNECTOR OR ME.STEREOTYPE = C2ATTACHOVERCOMP OR 
ME.STEREOTYPE = C2ATTACHUNDERCOMP OR ME.STEREOTYPE = C2ATTACHCONNCONN) 

[2] Each C2Component has at most one C2AttachConnAbove.  
LET COMPS=SELF.OCLTYPE.MODELELEMENT->SELECT(ME|ME.STEREOTYPE=C2COMPONENT), 
COMPS->FORALL(C | C.ASSOCEND.ASSOCIATION->SELECT(A |  
  A.STEREOTYPE = C2ATTACHCONNABOVE)->SIZE <= 1) 

[3] Each C2Component has at most one C2AttachConnBelow.  
Similar to the constraint above. 

[4] Each C2Component must be attached to some connector.  
LET COMPS=SELF.OCLTYPE.MODELELEMENT->SELECT(ME|ME.STEREOTYPE=C2COMPONENT), 
COMPS->FORALL(C | C.ASSOCEND.ASSOCIATION->SIZE > 0) 

[5] Each C2Connector must be attached to some connector or component.  
LET CONNS=SELF.OCLTYPE.ELEMENTS->SELECT(E|E.STEREOTYPE=C2CONNECTOR), 
CONNS->FORALL(C | C.ASSOCEND.ASSOCIATION->SIZE > 0) 

 
The above stereotype describes only one portion of C2 and is accompanied by 

other stereotypes defining C2 components and connectors, their interactions, and the 
internal makeup of individual components and connectors as specified in C2SADEL 
[13]. This complete specification of C2 concepts in terms of UML stereotypes was 
used as the basis for implementing the UMLGenerator component. Figure 5 shows a 
partial and somewhat simplified set of C2SADEL-to-UML transformation rules as 
encoded in the UMLGenerator. 

Internal Component Object → Class 
State Variable → Class Private Attribute 
Component Invariant → Tagged Value + Class Documentation  
Provided Operation → Class Operation  
Required Operation  → Class Documentation 

Operation Pre/Post Condition → Pre/Post Condition on Class Operation  
Message Return Type → Return Type on Class Operation  
Message Parameter → Parameter (Name + Type) on Class Operation  

Architecture Configuration (explicit invocation) → (Object) Collaboration Diagram  
Component Instance → Internal Component Object Class Instance  
Connector Instance → �Interface� Class Instance  
Component/Connector Binding → Object Link (instance of an association)  

Component → �C2-Component� Class  
Internal Component Object → �C2-Component� Class Attribute  
Component Top Interface → �Interface� Class  
Component Bottom Interface → �Interface� Class  
Outgoing Message → �Interface� Class �out� Operation  

Incoming Message → �Interface� Class �in� Operation 

Fig. 5. Excerpt from the rule set for transforming C2SADEL into UML. ©ª denotes stereotypes 



The UML specification resulting from this transformation is stored as a Rational 
RoseTM model [15]. A portion of the Rose model for the cargo router architecture from 
Figure 2 is shown in Figure 6: it depicts the entire architecture as a UML 
collaboration diagram (left) and the attributes of and class diagram corresponding to 
the DeliveryPort component (right). This automatically generated Rose model is 
consistent with the architectural model and is used as the basis for further, possibly 
manual refinement of the architecture as discussed below.  

4   Design Refinement and Analysis 

Architectural refinement enables us to transform our C2 architecture into a (high-
level) UML design. Since that design will likely be further refined into lower-level 
designs (and an implementation), those subsequent refinements may become inconsis-
tent with the original architecture. This is particularly likely if the refinements are 
done manually. This section will discuss how a refinement can be automated by em-
ploying a technique that augments UML (recall Figure 1).  

4.1   View Integration Framework 

To enable automated design analysis we have devised and applied a view integra-
tion framework, accompanied with a set of activities and techniques for identifying 
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mismatches in an automatable fashion [3]. This approach exploits redundancy be-
tween views: for instance, if view A contains information about view B, this informa-
tion can be seen as a constraint on B. The view integration framework is used to en-
force such constraints and, thereby, the consistency across the views. In addition to 
constraints and consistency rules, our framework also defines what information can 
be exchanged and how it can be exchanged. This is critical for automating the process 
of identifying and resolving inconsistencies since direct comparison between views is 
usually infeasible. Our framework has three major activities: 
• Mapping identifies related pieces of information and thereby describes what in-

formation is overlapping. Mapping is often done manually, e.g., via naming dic-
tionaries and traceability matrices.  

• Transformation simplifies (i.e., abstracted) detailed views or generalizes specific 
views. This activity describes how information can be exchanged and results in de-
rived modeling information. 

• Differentiation traverses the model to identify mismatches. Mapping indicates 
what information should be compared; Transformation indicates how that informa-
tion should be compared.  
 
We will illustrate these con-

cepts using the cargo router ex-
ample. Figure 7 depicts an excerpt 
of its design in UML in the form 
of a class diagram. This design 
varies considerably from the high-
level design we generated in Sec-
tion 3. As the design is further 
modified, it will become increas-
ingly difficult to see whether the 
changes are consistent with the 
original architecture, depicted in 
Figure 2. Again, note that the 
architectural and design views 
show distinct but overlapping 
information; this redundancy between the views is used in the form of constraints in 
helping to verify consistency. It has been our observation that the major challenge of 
view integration is not the actual comparison of views (Differentiation) but instead 
the Transformation and Mapping of modeling information [3]. Since Mapping tends 
to be predominantly manual, Transformation becomes the key enabling technology 
for automated view integration. We, therefore, discuss it on more detail. 

4.2   Transformation 

Figure 8 captures the three major dimensions of view transformation [3]. Software 
modeling views can be seen as abstract or concrete on the one hand, and generic or 
specific on the other. The abstract-concrete dimension was foreshadowed in Section 3 
where the C2 architecture was the abstract view and the generated UML model was 
the concrete view. Note that a view’s level of abstraction is relative. Thus, for in-
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aDeficiency

theWarehouseCollection

theStorage

RefrigeratedStorage

aWarehouse
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availableGoods

aPort

Fig. 7. Design Refinement of CargoRouter 



stance, the derived UML model depicted in Figure 6 is concrete relative to the C2 
view but abstract relative to the class diagram in Figure 7.4  

The generic-specific dimension denotes the generality of modeling information. 
For instance, a class diagram naturally describes a general relationship between 
classes, whereas a sequence diagram describes a specific scenario. Another way of 
saying this is that constructs in general views must capture the union of all specific 
views, and that a specific view must fit within the boundaries of its respective generic 
one. The level of generality/specificity is, again, in the eye of the beholder (e.g., a 
view is more generic than some views and more specific than others). 

Having two dimensions of views implies three types of transformation axes: Ab-
straction to capture vertical transformation, Consolidation to capture horizontal trans-
formation, and Translation to capture transformation within a single quadrant (both 
input and output views are of the same category). We have also observed that often 
only uni-dimensions transformations can be fully automated (e.g., [4,5]) - usually 
going from concrete to abstract or from specific to generic.  

The framework depicted in Figure 8 allows us to combine simple transformation 
techniques to enable more complex transformations in support of the integration of 
C2SADEL and UML. Figure 8 depicts one such complex transformation going from the 
lower right quadrant (e.g., a concrete sequence diagram) to the upper left quadrant 
(e.g., an abstract class diagram). The three paths (“a” to “c”) indicate the three alter-
native transformation scenarios on how to get there. Path “a” first abstracts the se-
quence diagram and then consolidates it to yield a class diagram view. Path “b” first 
consolidates and then abstracts. Path “c” consolidates, translates, and abstracts. There 
are of course other variations using additional translations. The translation step may 
seem redundant since it does not seem to put us any closer to the target quadrant. 
Nevertheless, translation can help us in circumventing a non-existing transformation 
by translating to another view that can be abstracted/consolidated or by switching to a 
more reliable abstraction/consolidation method not available within the current view. 

                                                           
4 Note that the implementation is the most concrete view of a system. 
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The right hand-side of Figure 8 depicts existing transformations our approach cur-
rently supports (e.g., concrete class to abstract class, sequence to state, etc.). Note that 
a few arrows are double-headed, with the second head drawn in a light gray shade. 
These cases denote examples where the reverse transformation is semi-automated. 

4.3   Implication of Transformation for Consistency Checking 

Complex transformations are not just a serial execution of individual transforma-
tions. To enable complex transformations we also need to address the issue of how to 
capture and maintain modeling information – in particular, how to handle derived 
modeling information [3]. Thus, transformation methods need to be integrated in 
order to avoid the two fundamental problems that may arise: 

 
1. Transformation Redundancy: a modeling element should be transformed at most 

once using the same transformation method, thus avoiding transformation redun-
dancy. 

2. Multiple Derived Results: multiple transformations of a modeling element using 
different transformation methods may result in multiple results. The model must 
therefore support multiple interpretations. 
 
Figure 9 demonstrates both issues using relation abstraction (a method that col-

lapses relations among multiple modeling elements into simpler relations). The bot-
tom-most layer on the left hand-side shows an excerpt of the class diagram from Fig-
ure 7 with four classifiers (boxes) and a number of relations (links) between them. 
The middle layer is more abstract in that the classifier aSurplus has been eliminated 
and a more abstract relation (τ) has been created to replace it. The top-most layer 
further eliminates the classifier availableGoods. We now have three views. If we 
were to store the views separately, we might eventually introduce inconsistencies 
between them. For instance, any changes to the bottom view would require updates to 
all its higher-level abstractions. This would likely become unmanageable in a large-
scale system with a large number of user-created views plus all their transformations. 
Furthermore, if we again take the bottom view and abstract aSurplus away, we are 

= {A,D}
= {ω={α,ζ},β}

Derived

= {A,B,D}
= {α,τ={β,δ},ζ={γ,δ}}

Derived

= {A,B,C,D}
= {α,β,γ,δ}

Original
aSurplus

aWare
house

aPort

Available
Goodsα

β

γ

δ

ζ

ω

τ

κ

Fig. 9. Representation of Abstraction Transformation  (multiple views and their storage) 



duplicating both effort and storage 
since we are not aware of the previ-
ous abstraction. The right hand-side 
of Figure 9 depicts a possible solu-
tion for these two problems. It sug-
gests using an n-ary relationship 
among modeling elements. The 
figures on the left are now simply 
projections of the model on the 
right. The underlying model on the 
right minimizes information dupli-
cation. Note that UML does not 
support n-ary relationships among 
many of its modeling elements, 
partially motivating our decision to 
augment it. Revisiting Figure 1, the 
problem of how to deal with derived 
modeling elements can only be 
solved by augmenting the model. 

4.4   Consistency Checking 

The issues discussed in sections 4.1 and 4.2 form the foundation that allows us to 
check the relative consistency of two or more UML models. Thus, in order to ensure 
the consistency of the UML model in Figure 7 with respect to the original C2 archi-
tecture in Figure 2 (or Figure 6) we can automatically derive the transformation paths, 
perform the actual transformations (the refinement of the C2 model and the abstrac-
tion of the class diagram), and then compare their respective results (two class dia-
grams at similar levels of abstraction). Figure 10 shows an excerpt of the abstraction 
from Figure 7 using a set of abstraction rules discussed in Section 4.2 and completely 
specified in [4]. We can now observe that the architecture differs from the design in 
several ways: the design does not include the Clock component or its related connec-
tor and depicts some component interactions (e.g., DelPort to Warehouse) that are not 
defined in the architecture.  

Although it is possible that both these cases are results of deliberate design deci-
sions, transformation has enabled us to easily compare the two views and quickly 
highlight their inconsistencies. The human designer can then either address the incon-
sistencies or ignore them. To date, we have automated a part of our view integration 
framework in a tool called UML/Analyzer [3]. The abstracted view depicted in Figure 
10 can be derived automatically using our tool. 

5   Conclusion 

This paper addressed architectural modeling using a specialized approach, C2, and 
showed how it can be used to complement a general-purpose modeling language, 

missing clock
components

and connectors

illegal
component
interaction

IncommingShipmentHandler

StateConn

VehicleArtist WarehouseArtist

DelPort Warehouse Vehicles

DeliveryPortArtist

ArtistConn

...
Fig. 10. Except of Abstracted Class Diagram 



UML. We discussed the benefits of C2 and UML as well as the need for integrating 
their respective strengths. The integration of C2 and UML is not a trivial undertaking 
and we introduced two techniques to enable it: constraining UML and augmenting it. 
We showed how to represent C2 in UML (Section 3) in order to illustrate constrain-
ing UML and how to perform complex transformations and view integration (Section 
4) in order to illustrate augmenting UML. 

This paper also presented formal approaches to software development to support a 
variety of development activities (specification, analysis, and modeling). Formalism 
plays a major role during all of those activities. Formalism is also the foundation of 
automation. The benefits of automation were illustrated throughout this paper. In 
Section 2, we discussed the analytic powers of special-purpose models like C2. Using 
C2 we were able to automatically analyze static and dynamic properties of our sys-
tem. Automation then helped us in further refining our special-purpose C2 model into 
a general-purpose UML model (Section 3). This automated refinement capability 
removed a major obstacle to model integration since no manual labor was required in 
making tools and models work together. Finally, automation supported us during 
model validation. We illustrated automated consistency checking between views and 
demonstrated this using a C2 architecture and its corresponding UML design (Sec. 4). 

To date, we have automated many of the concepts discussed in this paper and cre-
ated two tool suites: SAAGE (Dradel+Rose) to enable architectural modeling and 
refinement; and UML/Analyzer (also integrated with Rose) to enable automated 
transformations and consistency checking. It is our long-term vision to further extend 
the automation support to other aspects of the software life cycle. 
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